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To compare entire genomes from different species, biologists increasingly need alignment methods that are
efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological
features between distant species. We present LAGAN, a system for rapid global alignment of two homologous
genomic sequences, and Multi-LAGAN, a system for multiple global alignment of genomic sequences. We tested
our systems on a data set consisting of greater than 12 Mb of high-quality sequence from 12 vertebrate species.
All the sequence was derived from the genomic region orthologous to an ∼1.5-Mb region on human
chromosome 7q31.3. We found that both LAGAN and Multi-LAGAN compare favorably with other leading
alignment methods in correctly aligning protein-coding exons, especially between distant homologs such as
human and chicken, or human and fugu. Multi-LAGAN produced the most accurate alignments, while requiring
just 75 minutes on a personal computer to obtain the multiple alignment of all 12 sequences. Multi-LAGAN is a
practical method for generating multiple alignments of long genomic sequences at any evolutionary distance.
Our systems are publicly available at http://lagan.stanford.edu.

Comparing genomic sequences across related species is a fruit-
ful source of biological insight, because functional elements
such as exons tend to exhibit significant sequence similarity,
whereas regions that are not functional tend to be less con-
served. The first step in comparing genomic sequences is to
align them—that is, to map the letters of one sequence to
those of the others. There are several categories of alignments:
local alignments that identify local similarities between regions
of each sequence, and global alignments that find a monotoni-
cally increasing map between the letters of each sequence;
pairwise alignments that compare two sequences, and multiple
alignments that compare several sequences.

Local pairwise alignment methods such as Smith-
Waterman (1981), BLAST (Altschul et al. 1990, 1997), BLASTZ
(Schwartz et al. 2000), SSAHA (Ning et al. 2001), and BLAT
(Kent 2002) are able to pinpoint locations of rearrangements
between two sequences, and are suitable for aligning draft
sequences or individual reads. Global alignments are impor-
tant because they reveal the shared order of biological features
in the compared species, and produce a more accurate align-
ment at the base-pair level when the features are in the same
order. The best-known global alignment algorithm is Needle-
man-Wunsch (1970), which requires time proportional to the
product of the lengths of the aligned sequences. Unfortu-
nately this algorithm is too inefficient for comparing long
genomic sequences. Faster methods have been developed re-

cently: DIALIGN (Morgenstern et al. 1998, Brudno and Mor-
genstern 2002), MUMmer (Delcher et al. 1999, 2002), GLASS
(Batzoglou et al. 2000), WABA (Kent and Zahler 2000), and
AVID (Bray et al. 2003). Most of these methods have proven
effective in aligning genomic sequences from two closely re-
lated organisms, such as human and mouse or Caenorhabditis
elegans and C. briggsae, but have not been tested in alignments
between distant relatives such as human and fugu.

Multiple alignments, a natural extension of two-
sequence comparisons, are a powerful way to study biological
sequences. Even weak similarity across several sequences usu-
ally reveals an important conserved biological feature (Dub-
chak et al. 2000; Göttgens et al. 2002). Moreover, multiple
alignments enable the computation of local rates of evolu-
tion, giving a quantitative measure of the strength of evolu-
tionary constraints and the functional importance of local
regions (Simon et al. 2002). Multiple alignments are consid-
erably more difficult to compute than are pairwise align-
ments: the running time scales as the product of the lengths
of all the sequences. Formally, the problem is NP-complete
(Wang and Jiang 1994; Bonizzoni and Vedova 2001). For this
reason heuristic approaches are usually applied, of which the
most widely used is progressive alignment, which constructs a
multiple alignment by successive applications of a pairwise
alignment algorithm. The best-known system based on pro-
gressive alignment is perhaps CLUSTALW (Thompson et al.
1994). Some other systems include MULTALIGN (Barton and
Sternberg 1987), MULTAL (Taylor 1988), YAMA (Hardison et
al. 1993, 1994), and PRRP (Gotoh 1996). DIALIGN (Morgen-
stern 1999) does not use progressive alignment; instead it uses
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another heuristic approach to chain local conserved blocks
between several sequences into a multiple alignment. These
systems can effectively align proteins and relatively short ge-
nomic regions, but are not efficient enough to align entire
genomes. MGA (Höhl et al. 2002) is a rapid multiple aligner
suitable for comparing very close homologs, such as different
strains of a bacterium, but is not designed to align distant
homologs.

Here we describe novel systems for pairwise and multiple
alignment of genomic sequences: LAGAN (Limited Area Glo-
bal Alignment of Nucleotides), an efficient and reliable pair-
wise aligner that is suitable for genomic comparison of dis-
tantly related organisms, and MLAGAN (Multi-LAGAN), a
multiple aligner based on progressive alignment with LAGAN.
We tested our systems on sequence from 12 species generated
for the genomic segment harboring the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene (J.W. Thomas,
J.W. Touchman, R.W. Blakesley, G.G. Bouffard, S.M. Beck-
strom-Sternberg, E.H. Margulies, M. Blanchette, A.C. Siepel,
P.J. Thomas, J.C. McDowell, B. Maskeri, N.F. Hansen, M.S.
Schwartz, R.J. Weber, W.J. Kent, D. Karolchik, T.C. Bruen, R.
Bevan, D.J. Cutler, S. Schwartz, L. Elnitski, J.R. Idol, A.B. Pra-
sad, S.-Q. Lee-Lin, V.V.B. Maduro, M.E. Portnoy, N.L. Diet-
rich, N. Akhter, K. Ayele, B. Benjamin, K. Cariaga, C.P.
Brinkley, S.Y. Brooks, S. Granite, X. Guan, J. Gupta, P.
Haghighi, S-L. Ho, M.C. Huang, E. Karlins, P.L. Laric, R. Le-
gaspi, M.J. Lim, Q.L. Maduro, C.A. Masiello, S.D. Mastrian,
J.C. McCloskey, R. Pearson, S. Stantripop, E.E. Tiongson, J.T.
Tran, C. Tsurgeon, J.L. Vogt, M.A. Walker, K.D. Wetherby, L.S.
Wiggins, A.C. Young, L-H. Zhang, K. Osoegawa, B. Zhu,
B. Zhao, C.L. Shu, P.J. De Jong, C.E. Lawrence, A.F. Smit,
A. Chakravarti, D. Haussler, P. Green, W. Miller, and E.D.
Green, in prep.). Based on comparisons with other available
alignment programs and benchmarking on standard desktop
computer systems, we conclude that LAGAN and MLAGAN
are practical and reliable methods for large-scale pairwise and
multiple genomic alignment that should prove useful for ob-
taining alignments of the entire human, mouse, fugu, rat, and
other genomes in the context of a whole-genome alignment
pipeline.

RESULTS

Outline of Algorithms
LAGAN is a global alignment system that aligns two genomic
sequences in three main steps: (1) generation of local align-
ments between the two sequences, (2) construction of a rough
global map, by chaining an ordered subset of the local align-
ments, and (3) computation of the final global alignment, by
finding the best alignment that stays within a limited area
around the rough global map. Based on LAGAN, we devel-
oped MLAGAN, a new multiple alignment system that aligns
genomic sequences in two main phases: (1) a progressive align-
ment phase that constructs a multiple alignment by succes-
sively aligning two sequences, or intermediate multiple align-
ments, with the LAGAN algorithm, and (2) an optional itera-
tive improvement phase that successively removes each
sequence from the multiple alignment, and realigns it to the
rest of the alignment, until no significant improvements are
observed.

Global Sequence Alignment, LAGAN
In aligning two long genomic sequences, the Needleman-
Wunsch algorithm is too inefficient because it requires time

proportional to the product of the sequence lengths. Efficient
global aligners such as MUMmer (Delcher et al. 1999, 2002),
GLASS (Batzoglou et al. 2000), and AVID (Bray et al. 2003) rely
on anchoring. First, they detect local similarities between the
two sequences. Second, they select and fix an ordered set of
local similarities, the anchors. Finally, they align the interleav-
ing regions.

Anchoring reduces computation time because the initial
large alignment problem is subdivided into many smaller,
manageable ones. To perform anchoring reliably, the aligner
needs a sensitive local-alignment detection method, an accu-
rate procedure for selecting the anchors, and an efficient
method for computing the global alignment based on the
anchors. Anchoring is easier when the two sequences are
highly similar and contain frequent matching words. Existing
global aligners based on anchoring are primarily designed for
comparing highly similar sequences, such as human and
mouse. MUMmer, GLASS, and AVID, for instance, use exact
matching words for detecting local alignments.

LAGAN performs anchoring with techniques designed to
work well on distant, as well as close organisms. Specifically,
LAGAN uses the CHAOS algorithm (Brudno and Morgenstern
2002), a highly sensitive method that detects local alignments
using multiple short inexact words instead of longer exact
words. LAGAN then constructs the global alignment by first
applying CHAOS recursively in areas with sparse anchors, so
that each consecutive pair of anchors is separated by a dis-
tance smaller than a given maximum, and then performing a
limited-area dynamic programming algorithm on the area
around the anchors.

LAGAN aligns two sequences in three steps outlined
next, and described in Methods.

Algorithm LAGAN
Given a pair of sequences X, Y: A global alignment between the
two sequences is a path from the top-left to the bottom-right
corner of the alignment matrix X � Y (Fig. 1A)

Figure 1 The LAGAN algorithm. (A) A global alignment between
two sequences is a path between the top-left and the bottom-right
corner of their alignment matrix. (B) LAGAN first finds all local align-
ments between the two sequences. (C) LAGAN computes a maximal-
scoring ordered subset of the alignments, the anchors, and puts to-
gether a rough global map. (D) LAGAN limits the search for an opti-
mal alignment to the area included in the boxes and around the
anchors, and computes the optimal Needleman-Wunsch alignment
limited to that area. LAGAN uses memory proportional to the area of
the largest box plus the memory to hold the optimal alignment.
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Step 1. Generation of local alignments. Compute the local
alignments between the two sequences (Fig. 1B). As-
sign a weight to each local alignment.

Step 2. Construction of rough global map. Two local align-
ments can be chained if the end of one precedes the
start of the other in both X and Y. Compute the high-
est-weight chain of local alignments, using the Long-
est Increasing Subsequence algorithm (Fig. 1C). Call
each local alignment in the chain an anchor. Apply
Steps 1, 2 recursively between every pair of anchors
that are more than a threshold distance apart.

Step 3. Computation of global alignment. Define a subset of
the cells in the alignment matrix:

1. Include all cells at distance at most r from cells of the
anchor.

2. Between each consecutive pair of anchors, where the
first ends at positions (i, j) and the second begins at
positions (k, l) in X, Y, respectively, include the full
alignment box (Xi…Xk) � (Yj…Yl) between the two
endpoints (Fig. 1D).

Compute the global alignment using Needleman-
Wunsch-like dynamic programming within the subset
of the cells defined above.

Multiple Alignment, MLAGAN
MLAGAN is based on progressive alignment: A multiple align-
ment of K sequences is constructed in K–1 pairwise alignment
steps, where in each step two sequences, or intermediate mul-
tiple alignments, are aligned. MLAGAN uses LAGAN as the
pairwise-alignment subroutine, and introduces new methods
for scoring a multiple alignment with affine gaps, and for
refining a multiple alignment.

The multiple aligner CLUSTALW infers a phylogenetic
tree of the sequences, using hierarchical clustering. Inferring
such a tree is useful when aligning protein families with sev-
eral members within one genome. On the other hand, when
aligning orthologous genomic regions from different species
(e.g., human, baboon, mouse, rat, and chicken)—which is the
problem that we are targeting—the phylogenetic tree is usu-
ally known. Accordingly, MLAGAN assumes that the phylo-
genetic tree is given.

MLAGAN aligns K sequences in three main steps that are
outlined next. Step 1, the generation of rough global maps,
uses Steps 1 and 2 of LAGAN. Steps 2 and 3 are described in
Methods.

Algorithm MLAGAN
Given K sequences X1,…, XK, and a phylogenetic binary tree
between them.

Step 1. Generation of rough global maps. Find the rough global
map between each pair of sequences.

Step 2. Progressive multiple alignment with anchors.
2.1 Perform a global alignment between the two closest

sequences according to the phylogenetic tree, using
LAGAN.

2.2 Each alignment between two or more sequences pro-
duced in step 2 is a new multi-sequence. Find the
rough global maps of this multi-sequence to all other
multi-sequences. The details of this procedure and of
the scoring metric are described in Methods.

2.3 Iterate Steps 2.1 and 2.2, performing at every step a
global alignment between the two closest (multi)-

sequences, according to the phylogenetic tree. Repeat
until left with a multiple alignment of all sequences.

Step 3 (Optional). Iterative refinement with anchors. For each
sequence Xi in the multiple alignment:

3.1 Find segments of Xi that align better than a given
cutoff, in the existing multiple alignment. These seg-
ments are the anchors between Xi and the other se-
quences.

3.2 Align Xi to the multiple alignment of the other se-
quences with LAGAN.

Evaluation of Performance
We tested the performance of LAGAN and MLAGAN against
that of leading global and local alignment programs, by mea-
suring the ability of each aligner to correctly align protein-
coding exons in orthologous sequences. We used the follow-
ing two datasets: (1) the ROSETTA set (Batzoglou et al. 2000),
which contains 129 orthologous annotated genes with com-
plete intron sequences between human and mouse of average
length 10 Kbp, and (2) the CFTR region (J.W. Thomas, J.W.
Touchman, R.W. Blakesley, G.G. Bouffard, S.M. Beckstrom-
Sternberg, E.H. Margulies, M. Blanchette, A.C. Siepel, P.J. Tho-
mas, J.C. McDowell, B. Maskeri, N.F. Hansen, M.S. Schwartz,
R.J. Weber, W.J. Kent, D. Karolchik, T.C. Bruen, R. Bevan,
D.J. Cutler, S. Schwartz, L. Elnitski, J.R. Idol, A.B. Prasad, S.-Q.
Lee-Lin, V.V.B. Maduro, M.E. Portnoy, N.L. Dietrich, N.
Akhter, K. Ayele, B. Benjamin, K. Cariaga, C.P. Brinkley, S.Y.
Brooks, S. Granite, X. Guan, J. Gupta, P. Haghighi, S-L. Ho,
M.C. Huang, E. Karlins, P.L. Laric, R. Legaspi, M.J. Lim, Q.L.
Maduro, C.A. Masiello, S.D. Mastrian, J.C. McCloskey, R. Pear-
son, S. Stantripop, E.E. Tiongson, J.T. Tran, C. Tsurgeon, J.L.
Vogt, M.A. Walker, K.D. Wetherby, L.S. Wiggins, A.C. Young,
L-H. Zhang, K. Osoegawa, B. Zhu, B. Zhao, C.L. Shu, P.J.
De Jong, C.E. Lawrence, A.F. Smit, A. Chakravarti, D. Haussler,
P. Green, W. Miller, and E.D. Green, in prep.), which for the
studies described here consisted of 12 orthologous sequences
from human, chimpanzee, baboon, cat, dog, cow, pig, mouse,
rat, chicken, fugu, and zebrafish; these ranged in length from
160 Kbp to 1.8 Mbp, with an average of 1 Mbp. For the CFTR
region sequences, we used the human gene annotations to
identify the orthologous exons in the other 11 species’ se-
quences. This was done on the unaligned sequences before
any of the tests were conducted. We first aligned each known
human exon to the other sequences using TBLASTN and fil-
tered out all hits that were <50% identical at the amino-acid
level or covered <50% of the human exon. Then we desig-
nated the best match for each species as the orthologous
exon. Using this method, we annotated 75 or more exons in
all species, except chicken (24) and zebrafish (34), whose se-
quences were grossly incomplete. We recorded the positions
of the exons for use in the tests. After producing the align-
ments of the entire region, we tested whether the exons were
correctly aligned: For each exon, we calculated the fraction of
its length aligned to the corresponding exon in the ortholo-
gous sequences.

Tables 1 and 2 summarize the results for the ROSETTA
and CFTR datasets, respectively. In the ROSETTA set, we
tested the performance of MUMmer, GLASS, DIALIGN, AVID,
BLASTZ, and LAGAN. In the CFTR set, we did not test GLASS
or DIALIGN because these methods require too much com-
putation time to align longer sequences. We tested the per-
formance of MLAGAN by projecting the multiple alignment
to the 11 pairwise alignments between the human and the
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other species’ sequences. Of the pairwise aligners tested,
LAGAN, MLAGAN, and BLASTZ were the most accurate at
aligning the close (mammalian) sequences. LAGAN and MLA-
GAN were the best in aligning distant homologs. MLAGAN
was slower than the other aligners, but was also the most
accurate.

LAGAN and MLAGAN can be applied with a translated
anchoring option, according to which one or more of the local-

alignment-finding steps (the calls to CHAOS during LAGAN
Step 1) are performed on the translated amino-acid level,
rather than on the nucleotide level (as explained in Methods).
We tested the performance of translated anchoring on the
CFTR dataset. Table 3 summarizes the performance of LAGAN
and MLAGAN, when applied under our default translated an-
choring parameters (see Methods for details on the param-
eters). LAGAN’s performance changes in the more distant
alignments: it worsens in human/chicken, and improves sig-
nificantly in human/fugu, and human/zebrafish. MLAGAN’s
performance is only affected in the human/fugu alignment,
where it improves. Overall the performance improves when
translated anchoring is used, and this option may be signifi-
cant when aligning very distant species such as human/fugu.
However, translated anchoring in principle biases the aligners
to perform best in detecting homologies in protein-coding
regions, and consequently could perform worse in non-
coding regions. For that reason, we disabled translated an-
choring in the default parameters of the programs.

In anchoring-based global alignment, accuracy of the fi-
nal alignment depends on the accuracy of the anchors. We
found that the majority of human exons are covered correctly
during the anchoring phase (calls to CHAOS, Steps 1 and 2 of
LAGAN; Table 4).

Pairwise alignments produced by LAGAN can be visual-

Table 2. Performance of Aligners on the CFTR Region

Baboon Chimpanzee Mouse Rat Cow Pig Cat Dog Chicken Zebrafish Fugu Overall

Number of exons 232 176 230 230 224 174 176 182 68 48 150 1914
MUMmer

100% 100 99 6 7 28 32 38 28 0 0 0 36
90%–100% 100 100 8 9 40 44 47 37 0 0 0 41
70%–100% 100 100 14 16 52 55 56 45 0 0 0 47

AVID
100% 100 100 94 95 98 97 99 93 66 33 19 88
90%–100% 100 100 98 100 99 100 100 98 79 42 21 91
70%–100% 100 100 100 100 100 100 100 99 85 44 29 92

BlastZ
100% 100 100 97 97 96 97 100 94 96 73 66 94
90%–100% 100 100 100 100 98 100 100 99 97 79 72 97
70%–100% 100 100 100 100 100 100 100 99 97 79 80 98

LAGAN
100% 100 100 97 97 98 97 100 94 96 83 72 95
90%–100% 100 100 100 100 99 100 100 99 99 88 77 98
70%–100% 100 100 100 100 100 100 100 99 100 92 81 98

MLAGAN
100% 100 100 97 97 98 97 100 94 99 88 73 96
90%–100% 100 100 100 100 99 100 100 99 100 98 84 98
70%–100% 100 100 100 100 100 100 100 99 100 100 90 99

Time (sec)
MUMmer 8 6 7 7 8 6 6 6 3 2 2 61
AVID 82 57 215 221 165 111 139 131 83 53 76 1775
BlastZ 31 24 46 43 40 36 34 33 7 5 6 305
LAGAN 56 50 78 82 60 68 62 78 338 158 133 1135
MLAGAN — — — — — — — — — — — 4547

Max memory (MB)
MUMmer 40 39 40 40 40 39 39 39 39 38 38 40
AVID 598 551 581 584 578 498 522 502 387 340 360 598
BlastZ 239 276 202 212 204 200 208 206 188 185 185 276
LAGAN 90 90 90 89 90 87 88 87 88 87 89 90
MLAGAN — — — — — — — — — — — 670

The annotated human exons were aligned with TBLASTN to create pseudo-annotations of exons in the other organisms. The table reports the
percentage of exons covered by alignments over at least 70%, 90%, and 100% of their length, and the time and memory required to obtain
the alignments. The last column reports the percentages of exons aligned out of total number of exons, the total time required for the 11
alignments (for the single 12-sequence multiple alignment in the case of MLAGAN), and the maximum memory required.

Table 1. Performance of Aligners on the ROSETTA Dataset
of 1160 Total Exons in Human and Mouse

Aligner
100%
exons

90%
exons

70%
exons

Time
(sec)

DIALIGN 89 96 98 388
MUMmer 0 1 3 17
GLASS 91 97 98 154
AVID 90 95 97 19
BlastZ 94 97 98 17
LAGAN 94 97 98 48

Columns show the percentage of exons annotated in human that
are aligned to the orthologous mouse exon over at least 70%,
90%, and 100% of their length, and the time required to align the
129 sequences.
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ized using the VISTA (Mayor et al. 2000) program. Multiple
alignments produced by MLAGAN can also be visualized with
VISTA, by projecting them into the pairwise alignments with
respect to one reference sequence. For example, Figure 2A
shows the VISTA plot of a multiple alignment between hu-
man, chimpanzee, cow, mouse, chicken, and fugu, projected
into the human/chimpanzee, human/cow, human/mouse,
human/chicken, and human/fugu alignments.

We compared the alignment generated by LAGAN and
CLUSTALW for the first intron of the cMet gene in eight mam-
malian sequences (human, baboon, cat, dog, cow, pig, mouse,
and rat). Although the alignments between all of the species
besides rodents were similar, CLUSTALW misaligned the
mouse sequence around 4 kb and 10 kb, as is shown in Figure
2B. CLUSTALW required ∼40 minutes to compute the eight
species alignment after it generated the guide tree, whereas
MLAGAN required ∼2 minutes. We did not compare the per-
formance of MLAGAN and CLUSTALW in longer sequences,
because the running time of CLUSTALW scales quadratically
with sequence length.

MLAGAN’s accuracy in aligning known exons permits
identification of potential misannotations, and can provide

evidence for an alternative annotation. For example, consider
exon 10 of the cMet gene, as annotated by RefSeq as well as
Ensembl and Twinscan gene predictions. According to our
alignment, the RefSeq-annotated start position is not well
conserved among themammals analyzed (Fig. 3). There is also
a large gap (∼250 positions) in the alignment after the first 20
nucleotides of this exon, generated by sequence in cat that
has no clear homolog in any of the other species aligned.
However, a consensus splice acceptor site and the start posi-
tion of an Acembly gene prediction exon (exon 9 in Met.f and
Met.e, exon 10 in Met.a and Met.h), beginning 54 nucleotides
downstream of the RefSeq exon 10, is neatly conserved across
all the mammals studied. Additionally, no human ESTs cor-
respond to the RefSeq annotation, whereas all ESTs (as anno-
tated in the UCSC genome browser) align precisely with the
Acembly gene-prediction exon. The comparative information
provided by MLAGAN thus complements the experimental
evidence from the human ESTs in identifying this as a poten-
tial misannotation.

Finally, we investigated whether the availability of ge-
nomic sequence of intermediate distances can help align dis-
tant sequences correctly. We applied MLAGAN to the human,
fugu, andmouse sequences of the CFTR region, and compared
the projected human/fugu alignment with the corresponding
alignment produced by LAGAN. The MLAGAN alignment re-
sulted in a 3% increase in the number of exons perfectly
aligned (from 72%–75%), and a 6% increase in the number of
exons aligned over at least 70% of their length (from 81%–
87%), compared to the LAGAN human/fugu alignment. The
well-aligning regions of human and mouse effectively attract
the conserved regions in fugu, making it more likely that
those will be correctly aligned to human.

In summary, our results demonstrate that LAGAN and
MLAGAN are capable of efficiently solving difficult multiple
sequence alignment problems.

DISCUSSION
Sequence alignment is one of the oldest and most successful
applications of Computer Science to Biology. Despite the con-
siderable advances achieved after several decades of research
in this area, many important challenges remain (Miller 2001).

Table 4. Percentage of Exons Correctly Aligned During the CHAOS-Based Anchoring Phase of LAGAN
(Steps 1,2)

Alignment
human vs.

90%–100% 50%–89% 10%–49% 0%–9%

default transl. default transl. default transl. default transl.

Chimpanzee 97 97 3 3 0 0 0 0
Baboon 77 77 21 21 3 3 0 0
Cow 21 21 43 43 36 36 0 0
Pig 19 19 33 30 47 50 1 1
Dog 20 20 37 37 41 42 2 1
Cat 20 20 41 41 39 39 0 0
Mouse 10 10 35 37 52 51 2 2
Rat 13 10 47 46 40 42 1 2
Chicken 9 9 26 41 62 47 3 3
Fugu 12 29 19 29 57 35 12 7
Zebrafish 27 33 29 42 38 25 4 0

Percentage of human exons that have a given proportion of their lengths covered (90%–100%, 50%–89%, 10%–
49%, and 0%–9%). Translated anchoring performs better at covering a greater proportion of exons. However, we do
not have measurements on whether translated anchoring performs worse in covering biologically significant non-
coding features.

Table 3. Changes in Performance of LAGAN and MLAGAN
on the CFTR Dataset When Translated Anchoring Is Enabled

Alignment Aligner 100% 90%+ 70%+
Time
diff.

Human/chicken LAGAN �2% �3% �3% +25%
MLAGAN 0% 0% 0% —

Human/fugu LAGAN +6% +8% +8% +93%
MLAGAN +4% +3% +1% —

Human/zebrafish LAGAN +7% +6% +4% +29%
MLAGAN 0% 0% 0% —

Total for all 11 LAGAN +1% 0% +1% +60%
alignments MLAGAN 0% +1% 0% +66%

We report the differences in the percentage of exons correctly
aligned with translated anchoring vs. with the default options
where translated anchoring is disabled. No changes were ob-
served in the alignments between mammalian sequences.
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One of these challenges is the development of systems for
aligning multiple long genomic sequences efficiently and re-
liably. This problem is becoming increasingly important as
several entire genomes from related species become available.

MLAGAN is suitable for high-throughput reliable mul-
tiple alignment of genomic sequences. MLAGAN is based on
LAGAN, which is designed for rapid and reliable alignment of
a pair of genomic sequences that may be very similar (e.g.,
human and chimpanzee), or very distant (e.g., human and
fugu). Both programs are available for use on a public web
server, http://lagan.stanford.edu, and are compatible with the
VISTA visualization tool. The source code for LAGAN and
MLAGAN is available from the authors.

LAGAN and MLAGAN assume that one has already iden-
tified apparent orthologous regions between two species, and

that there are no genomic rearrangements. Identifying or-
thologous regions is challenging in the context of an auto-
matic pipeline for whole-genome alignment. While genome
rearrangements have been researched at the level of genes
(Sankoff 1999), aligning sequences in the presence of rear-
rangements is a direction for future research.

An interesting question in research on sequence com-
parisons has been whether local or global alignment algo-
rithms are more appropriate for a given application. When
genomic sequences come in several unordered fragments, or
when genomic rearrangements are frequent, local alignments
are more appropriate, and less likely to miss true conserva-
tion. At the same time, genomes such as human, mouse, rat,
and even fugu, share large blocks of essentially uninterrupted
synteny. As the number of sequences increases, pairwise local

Figure 2 Visualization of a multiple alignment using VISTA. (A) MLAGAN alignments can be visualized using VISTA, if they are projected to
pairwise alignments with respect to one reference sequence. This plot shows the conservation between human and chimpanzee, cow, mouse, and
fugu around the first intron of the cMet gene. The human/chimpanzee conservation is uniformly very high; human/cow and human/mouse show
varying levels of conservation. The human/chicken alignment also shows some conservation in the non-coding areas. The human/fugu alignment
shows conservation only within the first coding exon, and to a lesser degree within the regions upstream and downstream of that exon. (B) First
introns of cMet, comparison of CLUSTALW and MLAGAN alignments. We compared the alignment generated by LAGAN and CLUSTALW for the
first intron of the cMet gene in eight mammalian sequences (human, baboon, cat, dog, cow, pig, mouse, and rat). The alignments between all
of the species except rodents were similar. VISTA plots of the projections to human and mouse are shown. CLUSTALW (top) misaligned the mouse
sequence around 4 Kb and 10 Kb, whereas MLAGAN (bottom) found significant conservation in these regions.
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alignments may be increasingly dif-
ficult to reconcile into an overall
picture of conservation. We believe
that multiple global alignments of
orthologous blocks provide a much
cleaner picture of the genome evo-
lution, and will become increas-
ingly important as the number of
available genomes increases.

Our results suggest that mul-
tiple alignments are better than
pairwise alignments at aligning
conserved exons between distant
species. For that reason, a three-way
global alignment of the human,
mouse, and fugu genomes may be a
good way to obtain accurate align-
ments of the human and fugu
genes.

Some of the most promising
methods for annotating biological
features such as genes and regula-
tory elements are based on two-
species sequence comparisons.
Such annotation methods use se-
quence conservation, plus the co-
incidence of signature of the bio-
logical feature in the two species, as
signals to detect the feature. Char-
acteristic signatures such as open
reading frames and splice-site consensus sequences in genes,
nested nucleotide complementarities in non-coding RNA
genes, and motifs in regulatory elements, should be much
easier to recognize whenever they are conserved across mul-
tiple species. Multiple-comparison-based annotationmethods
may prove powerful in annotating biological features within
a multiple alignment.

Multiple sequence alignment will become an increas-
ingly important tool for biological discovery as several ge-
nomes suitable for cross-species comparison become avail-
able. Our systems should enable researchers to align long or-
thologous regions from several species, and design multiple
alignment pipelines on a whole-genome scale.

METHODS

Global Pairwise Alignment, LAGAN
LAGAN aligns a pair of genomic sequences in three main
steps: (1) generation of local alignments, (2) construction of a
rough global map, and (3) computation of the final global
alignment. These three steps are described in detail next.

Generation of Local Alignments
To generate local alignments between the two sequences,
LAGAN uses CHAOS, a method that finds local homologies
between two sequences, and chains them into a rough global
map (Brudno and Morgenstern 2002). Instead of CHAOS, any
efficient local alignment method can be used (details on how
to incorporate a different local aligner into LAGAN can be
found in our website, http://lagan.stanford.edu). Here, we
summarize CHAOS and describe rapid rescoring, an improve-
ment we have made to this algorithm.

The CHAOS algorithm works by chaining short words,
the seeds, which match between the two sequences. Given a
word length k, and a degeneracy c, a (k, c)-seed is a pair of

k-long words (k-mers) that match with at most c differences
between the two sequences. Given a maximum distance d,
and maximum shift s, two seeds that are x- and y-letters apart
in the first and second sequences, respectively, can be chained
together if x � d, y � d, and | x � y | � s. A seed is chained to
the single previous seed that creates the highest scoring chain
among all chains that end with this seed. CHAOS also sup-
ports a translation option, in which both nucleic sequences
are translated in all six coding frames (three forward and three
reverse), and all combinations of frames are compared in turn.
Amino acids are grouped (Stanfel 1996), and all amino acids
in the same group are considered equal.

Scoring of Chains
After computing the maximal chains, CHAOS scores each
chain by using match and mismatch penalties for the letters
of each seed, and gap penalties proportional to | x � y | for
each pair of chained seeds. CHAOS throws away chains that
score below some threshold t. We augment this scoring
method, by adding a rapid rescoring step: Chains that score
below t are immediately thrown away. Chains that score
above t are rescored by performing ungapped extensions in
both directions from each seed, and finding the optimal lo-
cation to insert exactly one gap of size | x � y | . If the align-
ment is done on amino acid sequences, the rescoring is done
using a BLOSUM (Henikoff and Henikoff 1992) matrix.

Construction of a Rough Global Map
LAGAN orders the local alignments produced by CHAOS into
a rough global map (Fig. 1B,C). A local alignment is a vector
(b, e, b�, e�, s), representing begin and end positions of the
alignment in each sequence, and the score of the alignment.
Given two local alignments A1 = (b1, e1, b1�, e1�, s1), A2 = (b2,
e2, b2�, e2�, s2), we say A1 < A2 if and only if e1 < b2 and e1� < b2�.
A chain of local alignments A1 < A2 < … < Ak, has score s1 + s2
+ … + sk. The optimal rough global map is the highest-scoring
chain, which can be computed using Sparse Dynamic Pro-

Figure 3 Multiple alignment of a misannotated exon of the cMet gene. According to the MLAGAN
alignment, the RefSeq-annotated start position of the exon is not well conserved among the mammals.
There is also a large gap (∼250 positions) in the alignment after the first 20 nucleotides of this exon,
generated by sequence in cat that has no clear homolog in any of the other species aligned. However,
a consensus splice acceptor site and the start position of an Acembly gene prediction exon (exon 9 in
Met.f and Met.e, exon 10 in Met.a and Met.h), beginning 54 nucleotides downstream of the RefSeq
exon 10, is neatly conserved across all the mammals studied. Additionally, no human ESTs correspond
to the RefSeq annotation, whereas all ESTs (as annotated in the UCSC genome browser) align precisely
with the Acembly gene prediction exon.
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gramming in time O(n log n) where n is the total number of
local alignments (Eppstein et al. 1992).

Recursive Anchoring
When computing the local alignments with CHAOS, the
choice of parameters k (length of seeds), c (maximum degen-
eracy of seeds), and t (score threshold) presents a tradeoff
between speed (more restrictive parameters: higher k, lower c),
and sensitivity to detecting all significant alignments (more
permissive parameters: lower k, higher c, lower t). LAGAN uses
a recursive method similar to the one used in GLASS (Batzo-
glou et al. 2000), to achieve a combination of speed and sen-
sitivity. During a recursive anchoring step, LAGAN calls
CHAOS with a restrictive set of parameters, computes a rough
global map based on the resulting local alignments after the
latter are rescored, and then recursively calls CHAOS with a
more permissive set of parameters in the regions between
each anchor of the global map.

Translated Anchoring
As an option, some of the recursive anchoring steps can be
translated. This option biases the aligner to perform best in
protein-coding regions and potentially worse in other con-
served regions, and therefore as a default translated anchoring
is disabled.

Computation of Global Alignment
To compute the final global alignment, LAGAN uses the
rough global map to limit the search area of dynamic pro-
gramming. In standard Needleman-Wunsch, the search area
consists of a (M+1) � (N+1) matrix, where M and N are the
lengths of sequences X and Y, respectively. The algorithm
produces the optimal global alignment, which is the highest-
scoring path from cell (0, 0) to cell (M, N); each cell in the path
is greater than the previous cell, by 1 in the x coordinate, y
coordinate, or both.

The Needleman-Wunsch algorithm evaluates the opti-
mal intermediate alignment score for all (M+1) � (N+1) cells
in the alignment matrix, and therefore requires time O(MN).
If, however, it is known that the alignment passes through a
point (i, j), then there is no need to evaluate cells in the rect-
angles from (i+1, 0) to (M, j�1), and from (0, j+1) to (i�1, N).
LAGAN uses this idea: for every anchor in the rough global
map, starting at (i, j) and ending at (i�, j�), LAGAN limits the
computation of Needleman-Wunsch within the following
three areas (where r is a parameter, typically 15): (1) the rect-
angle (0, 0) to (i + r, j + r), (2) the rectangle (i� � r, j� � r) to
(M, N), (3) the band enclosed by the two diagonals from
(i � r, j + r) to (i� � r, j� +r), and from (i + r, j � r) to (i� + r,
j� � r; Fig. 4). In this sense the anchors in LAGAN are more
flexible than the anchors in MUMmer, AVID, and GLASS; in
these programs, the anchors are fixed, whereas in LAGAN
they provide only approximate locations by which the align-
ment should pass.

Memory-efficient Implementation
The search area of the limited-area dynamic programming
step consists of necks that enclose the anchors, and rectangles
that connect two consecutive anchors (Fig. 1C). In practice,
LAGAN performs the entire computation with memory pro-
portional to the size of the largest rectangle. LAGAN achieves
this memory efficiency as follows: First, it allocates working
memory for one rectangle and the neck that follows it, and
computes the Needleman-Wunsch matrix within this rect-
angle and neck. Second, LAGAN traces back all optimal align-
ments ending in the cells at the rightmost column of the
neck; in practice, these alignments quickly converge upon a
single optimal alignment. Finally LAGAN deallocates all
working memory, except the memory necessary to keep the

traced-back alignments. These three steps are then repeated
for the next rectangle and neck.

Running Time Analysis
The running time of LAGAN is dominated by the total num-
ber of cells in the rectangles between consecutive anchors. The
number of cells in the necks of constant width r is O[r · (M +
N)] and is linear in the sequence lengths.

Suppose the anchoring step yielded n anchors, and let
(x0, y0),…,(xn, yn) be the dimensions of each of the n + 1
rectangles. Let

L1 = �
i = 0

n

xi and L2 = �
i = 0

n

yi

denote the total length of the inter-anchor segments in each
sequence. At this stage we are effectively working with se-
quences of length L1 and L2, as we can assume the anchors
will be aligned in linear time and therefore ignore their
length.

The total number of cells in these rectangles is

�
i = 0

n

xi yi,

which can be rewritten as

�
i = 0

n

��xi − x��yi − y� + xyi + xiy − xy �

= n � cov�xi,yi� + xL1 + L2y − nxy
= n � cov�xi,yi� + L1L2�n + L1L2�n − L1L2�n
= L1L2�n + n � cov�xi,yi�

where x̄ and ȳ are the means of each distribution, and
cov(xi,yi) is the covariance.

The first term of this expression depends only on the
effective lengths of the sequences and the total number of
anchors. If we assume a lower bound on acceptable anchor
density, then L1L2/n behaves linearly in sequence length be-
cause L1/n and L2/n are O(1). The second term is at most n

Figure 4 Limited area of dynamic programming around an anchor.
An anchor between (i, j) and (i�, j�) in the rough global alignment
limits the search area of Needleman-Wunsch. The alignment is re-
quired to pass through the diagonal from (i � r, j + r) to (i + r, j � r),
stay within the diagonals from (i � r, j + r) to (i� � r, j� + r) and from
(i + r, j � r) to (i� + r, j� � r), and exit through the diagonal from
(i� � r, j� + r) to (i� + r, j� � r).

Brudno et al.

728 Genome Research
www.genome.org



�x�y, where � denotes the standard deviation of the corre-
sponding distribution. The upper bound is achieved in case of
perfect correlation in the spacing of anchors in the two se-
quences. Assuming constant anchor density—a reasonable as-
sumption for a fixed pair of organisms—this upper bound is
linear in sequence length provided the standard deviation �
of each distribution is constant. Thus, if the anchors are
spaced approximately evenly, and with a constant density,
the running time will be linear in sequence length.

Global Multiple Alignment, MLAGAN
MLAGAN aligns multiple genomic sequences in two main
phases, namely (1) a progressive alignment phase based on
LAGAN pairwise alignments, and (2) an optional iterative im-
provement phase. Next we describe in detail the progressive
alignment phase, the scoring method used in MLAGAN, and
the iterative improvement phase.

Progressive Multiple Alignment with Anchors
During progressive alignment, MLAGAN aligns the sequences
in the order of the given phylogenetic tree. For example,
MLAGAN aligns sequences from human, chimpanzee, mouse,
rat, and chicken, in the following order: (1) (human, chim-
panzee), (2) (mouse, rat), (3) (human/chimpanzee, mouse/
rat), (4) (human/chimpanzee/mouse/rat, chicken). Each
alignment step merges two sequences or alignments into a
larger alignment, effectively building a profile of all the se-
quences. The scoring method used is similar to CLUSTALW’s
method, with some significant differences in the treatment of
gaps. We explain our scoring method in detail in the next
subsection.

In Step 2.1, MLAGAN aligns two (multi-)sequences X and
Y, to generate multi-sequence X/Y, by performing limited-area
dynamic programming (LAGAN Step 3). This step assumes
that the rough global map between the two (multi-) se-
quences is known, as guaranteed by Step 2.2. In Step 2.2,
MLAGAN recomputes the rough global map between the
newly generated multi-sequence X/Y and each (multi)-
sequence Z, in two steps:

1. The anchors between X/Y and Z are computed as follows:
First, all anchors in the rough global maps between X and
Z, and between Y and Z, become anchors between X/Y and
Z, with score equal to their original score. Second, each
anchor between X and Z that overlaps an anchor between
Y and Z, is reweighed with score equal to (s1 + s2) � I/U,
where s1, s2 are the scores of the (X, Z) and (Y, Z) anchors,
respectively, I is the length of intersection, and U is the
length of union of the anchors (summed in X/Y and Z;
Fig. 5).

2. The rough global map between X/Y and Z is the highest-
weight chain of these anchors, computed using the Long-
est Increasing Subsequence algorithm.

In Step 2.3, MLAGAN selects the next two closest (multi)-
sequences in the phylogenetic tree, and goes to Step 2.1.

Multiple Alignment Scoring with Affine Gaps
Scoring schemes for multiple alignments is an open research
area, with some innovative solutions published recently, such
as T-COFFEE (Notredame et al. 2000). A full probabilistic
framework for modeling multiple sequence alignments was
implemented in HANDEL (Holmes and Bruno 2001). Two
classical models are sum-of-pairs, and consensus. The sum-of-
pairs model scores the multiple alignment according to the
sum of scores of all pairwise alignments. The consensus model
creates a consensus string by a (weighted) majority vote at
each position, and scores the multiple alignment according to
the sum of pairwise scores between the consensus sequence
and each individual sequence (Gusfield 1999). Each scoring
model has advantages and disadvantages. The sum-of-pairs

model, for example, penalizes each additional gapped se-
quence less than previous ones. Given a gap penalty of g, in a
K-sequence alignment the first gap in a given position gets
penalized by (K�1) � g, the second gap by (K�3) � g, and
the ith gap by (K�2i+1) � g. As a result, once a few gaps are
already open it becomes advantageous to open more gaps
whenever they result in small improvements in the number of
matches. An alternative is to penalize gaps per sequence, but
this is also problematic because a deletion in one sequence is
significantly favored over an insertion in one sequence, lead-
ing to artificial compression of the multiple alignment. The
consensus model does not properly model different lineages:
A column with seven ‘T’s and five ‘A’s aligned, scores equally
to one with seven ‘T’s, two ‘C’s, two ‘G’s, and one ‘A’. We use
a combination of the approaches: sum-of-pairs for scoring
substitutions, and consensus (scaled appropriately) for scor-
ing gaps. Our approach is most similar to CLUSTALW, which
uses a sum-of-pairs approach for scoring substitutions, and
heuristically weighted per-sequence penalties to score gaps.

A straightforward implementation of the consensus af-
fine-gap model in multiple alignments leads to the stacking
effect: Because gap-open penalties are large compared to
match and mismatch scores, often it is favorable to artificially
open additional gaps in order to stack the gap openings (Fig.
6). To overcome this problem we use a gap-end penalty equal
to the gap-open penalty (effectively, we divide equally the
penalty for opening a gap into gap open and gap end). As can
be seen from Figure 7, introducing such a gap-end penalty
eliminates the stacking effect.

We define the multiple alignment score precisely as fol-
lows. Given a multiple alignment of K sequences, let (Aij) be
the K � L alignment matrix: Ai1 … AiL is the ith aligned se-
quence, where Aij ∈ {A, C, G, T, –} (‘–’ denotes a gap). Define
the K � L matrix (Bij) over the four letters ‘N’ (nucleotide), ‘O’
(gap open), ‘G’ (gap continue), and ‘C’ (gap close): Bij = ‘G’ in
all gapped positions (where Aij = ‘–’), except the ones opening
a gap, in which case Bij = ‘O’; Bij = ‘N’ in all nucleotide posi-
tions (where Aij � ‘–’), except the ones closing a gap, in which
case Bij = ‘C’.

Let m, d, g, and c be the match, mismatch, gap-open, and
gap-continue penalties, respectively. Define the function S(x,
y), where x, y ∈ {A, C, G, T, –}, as follows: S(x, y) = 0, if x = ‘–’
or y = ‘–’; otherwise, S(x, y) = m if x = y, and S(x, y) = d if x � y.
The function S(x, y) will be used for the sum-of-pairs match
and mismatch component of the score.

Figure 5 Generation of anchors during progressive alignment.
Multi-sequence X/Y is aligned to sequence Z. Anchors between X and
Z (top) and anchors between Y and Z (middle) are remapped to co-
ordinates in the X/Y multi-sequence, and given a new score. Then, the
Longest Increasing Subsequence algorithm is applied to select a sub-
set of the remapped anchors, as the anchors between X/Y and Z.
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Let Nj be the number of ‘N’s in the jth column of (Bij).
Similarly, define Oj, Gj, and Cj. Define the function
T(i) = min(Oi, K�Oi) � (g + c) + min(Gi, K�Gi) � c + min(Ci,
K�Ci) � g. The function T(i) will be used for the consensus-
based gap component of the score. The multiple alignment
score is then:

SCOREMLAGAN��Aij�� = �
1�i�L

��K − 1�T�i� + �
1�j�K

�
j<k�K

S�aij,aik��
Iterative Refinement With Anchors
One shortcoming of progressive alignment is that the initial
pairwise alignments are fixed, and early errors cannot be cor-
rected later, when more information is available. A simple
example of this situation is shown in Figure 7, where se-
quences 5 and 6 are initially misaligned. To fix such errors we
use a technique known as iterative refinement.

In standard iterative refinement, as used by CLUSTALW,
each sequence is removed from the multiple alignment and
re-aligned, yielding a better alignment. This process is re-
peated for a number of iterations, or until the score cannot be
further improved (a local maximum is reached). Anson and
Myers (1997) introduced a limited-area version of iterative

refinement: Each sequence is realigned under the constraint
that the realignment stays within radius r from the original
alignment. This procedure improves the alignment locally,
but does not allow large-scale changes. MLAGAN introduces a
limited-area version of iterative refinement (Step 3 of Algo-
rithm MLAGAN) that has the advantages of performing more
work in the areas that need it, and of allowing larger-scale
adjustments: Each sequence is removed iteratively, and every
region of the removed sequence that improved significantly
the score of the multiple alignment becomes an anchor. For
each position i in the sequence, the cumulative contribution
si of positions 1,…,i to the existing multiple alignment score
is calculated by summing the score of position i to si–1. When
si falls below 0 at position i, si is set to 0. When si reaches a
threshold T, si is set to 0, and an anchor is created at position
i. The removed sequence is then re-aligned to the remaining
ones using the LAGAN algorithm with these anchors. LAGAN
allows for small changes around the anchors, while doing a
full alignment search in between the anchors. Therefore, the
above procedure makes small improvements in well-aligning
regions and allows for larger adjustments between them.

Training, Testing, and Default Parameters
We trained the parameters of CHAOS, LAGAN, and MLAGAN
on the stem cell leukemia (SCL) region from human, mouse,
chicken, fugu, and zebrafish (Göttgens et al. 2002). During
training we did not use the ROSETTA dataset, or the CFTR
region, where we tested. One exception is a number of soft-
ware bug fixes that were specific to the size of the dataset,
such as memory leaks, which were corrected after applying
LAGAN and MLAGAN to the CFTR sequences.

LAGAN and MLAGAN compute the rough global map
using recursive calls to CHAOS with parameters (k, c, t), where
k is the k-mer size, c is the allowed degeneracy, and t is the
threshold (see Methods: Generation of Local Alignments).
The default recursive steps are (12, 0, 30), (13, 1, 30), (8, 1, 30),
and (7, 1, 30), on sequences masked using RepeatMasker (Smit
and Green). These steps are followed by a (7, 1, 30) step on the
unmasked sequences in order to anchor the conserved re-
peats. An optional (5, 0, 50) step on the translated sequences
can be inserted between the (13, 1, 30) step and the (8, 1, 30)
step. The translated anchoring step is scored using a
BLOSUM62 matrix. This step is disabled by default, and was
disabled during the testing reported in Tables 1 and 2. The
distance d parameter is 20 for genomic sequences and 8 for
comparison of peptides (translated). The shift s is 5 for all
runs.

During the limited-area computation of global align-
ment (Step 3 of LAGAN, Fig. 4), the default radius is r = 15.

The limited-area dynamic programming pass (Step 3 of
LAGAN) uses match m = +12 (or +18 for MLAGAN), mismatch

d = �8, gapopen g = �100, and
gapcontinue c = �5. In MLAGAN,
the gapopen parameter gets split
equally, as explained in Section
3.2.2, into gapopen = �50 and
gapend = �50.

All of the tests were run on a
2.3-GHz Pentium IV machine with
500MB of RAM, except for AVID on
the CFTR dataset, which due to the
memory requirements was run on a
2-GHz Pentium IV machine with
1GB of RAM.

Most of the other programs we
tested can take many different pa-
rameters. For all programs we used
the parameters that were either sug-
gested by the authors, or gave the
best results for that particular pro-

Figure 7 Part of a multiple alignment between eight mammalian sequences, before and after itera-
tive refinement. Refinement improves the overall alignment by correctly placing the two T’s in the fifth
and sixth sequence, and changing a 1-bp deletion in sequence 5 into an insertion in sequence 6.

Figure 6 The stacking effect. (A) The correct multiple alignment of
seven sequences. (B) The multiple alignment of the same seven se-
quences, with the stacking effect. When only gap-open and gap-
continue penalties are used, the stacked alignment (B) incurs one
gap-open penalty less than the correct alignment (A), and therefore is
optimal. When gap-end penalties are used, the correct alignment (A)
is optimal because it incurs two gap-end penalties less than the
stacked alignment (B).
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gram. Specifically: BLASTZ was run with a cutoff score of 2200
(K = 2200); DIALIGN used CHAOS anchoring, and was run
with the ‘�nt’ (compare at the protein-coding level) option;
AVID version 0.91 was used, as it performed better than AVID
1.2 on the CFTR dataset. (AVID 1.2 performed slightly better
on the ROSETTA dataset.).
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